Regularization of Ill-Posed Point Neuron Models
نویسنده
چکیده
Point neuron models with a Heaviside firing rate function can be ill-posed. That is, the initial-condition-to-solution map might become discontinuous in finite time. If a Lipschitz continuous but steep firing rate function is employed, then standard ODE theory implies that such models are well-posed and can thus, approximately, be solved with finite precision arithmetic. We investigate whether the solution of this well-posed model converges to a solution of the ill-posed limit problem as the steepness parameter of the firing rate function tends to infinity. Our argument employs the Arzelà-Ascoli theorem and also yields the existence of a solution of the limit problem. However, we only obtain convergence of a subsequence of the regularized solutions. This is consistent with the fact that models with a Heaviside firing rate function can have several solutions, as we show. Our analysis assumes that the vector-valued limit function v, provided by the Arzelà-Ascoli theorem, is threshold simple: That is, the set containing the times when one or more of the component functions of v equal the threshold value for firing, has zero Lebesgue measure. If this assumption does not hold, we argue that the regularized solutions may not converge to a solution of the limit problem with a Heaviside firing function.
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملConvergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators
We investigate convergence rates of Tikhonov regularization for nonlinear ill-posed problems when both the right-hand side and the operator are corrupted by noise. Two models of operator noise are considered, namely uniform noise bounds and point-wise noise bounds. We derive convergence rates for both noise models in Hilbert and in Banach spaces. These results extend existing results where the ...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017